Automated Rotating Solar Plant Rack with Self-Care Capabilities

Group 23

Abigail Michael Brian Geibig Christina Quinones Melissa Rose

Our Team

Melissa Rose Electrical Engineering

Christina Quinones Electrical Engineering

Abigail Michael Electrical Engineering

Brian Geibig Electrical Engineering

Introduction

- Gardening is a wonderful hobby that not only provides comfort and food to billions but also enriches the Earth by reducing carbon output.
- However, plant maintenance can be time-consuming and easy to blunder. Those with a busy schedule and/or lack of a green thumb may avoid gardening because of this.
- All those setbacks can be eliminated with an automated plant care tools! Sensors, water pump and soil piping, shading, rotation, and plant settings application will allow one to have plants without worrying about maintenance.

Project Goals & Objectives

- To create a system that will autonomously provide water and sunlight to a plant
- To create a system that can assure its plant grows straight up rather than towards the light source
- To provide a method for caring for a plant when one cannot be present
- To create an easy-to-use interface that can be leaned in a short period of time

Motivation

- Interest in Smart Home Technology
- Previous Experience with Plants

Block Diagram

Brian Geibig - Electromechanical Output Systems

Abigail Michael - Application and Software Development

Christina Quinones - Power System and Electromechanical Input Systems

Melissa Rose - Sensors and Controller/Application Development

Workload Distribution

	Electromechanical Output Systems	Application & Software Development	Power Systems & Electromechanical Input Systems	Sensors, Modules, & Control	
Brian Geibig	Primary		Secondary		Melissa Brian Rose Geibig 25% 25%
Abigail Michael		Primary		Secondary	Christina Abigail
Christina Quinones	Secondary		Primary		Quinones 25% Michael 25%
Melissa Rose		Secondary		Primary	

Physical Design

Physical Design

Height: 30" Base diameter: 12"

Requirements & Specifications Table - Hardware

—	_	
Part	Requirement	Justification
Power System	Output Power > 20W Efficiency > 70%	To provide power to all sensors and systems while remaining power efficient
Battery	Capacity ≥ 5 Ah	To provide a sufficient power supply to all components
Solar Charge Controllers	Output Voltage 12.6 - 13.7V	To have overcharge protection
Voltage Regulators	Output Voltage Tolerance: ±2mV	To accurately regulate 3.3V, 5V, 7V and 12V
Irrigation System	Output Rate: 0.2 liters/min	So the water can fill the pot when requested
Light Sensor	Detects >10000 lux	To accurately measure the intensity of the Sun
Moisture Sensor	Delay Cycle > 1 sec	So the sensor is power efficient
Shading System	Deploys < 1 minute	To provide a more efficient system

Requirements & Specifications - Software

Part	Requirement	Justification
Wi-Fi Module	Max Current < 250 mA	To provide a more power efficient system
Microcontroller	Current: < 50 mA Operating Voltage: 5V	So the microcontroller can sufficiently control the system while remaining power efficient
Application	Installation Time: < 5 minutes File Size: < 20 MB	To provide a more user friendly experience

Irrigation System

Shading System

Rotational System

Motor Drive Controller

L298N Dual Full-Bridge Driver

Light Sensor

- Purpose: Sunlight Detection for Shading System
- Product: SparkFun Ambient Light Sensor with Qwiic Ports
- Onboard Light Sensor: VEML6030
- **Output:** Digital
- Light Detection Range: 0 120000 lux
- Operating Voltage: 3.3 V Communication Feature: I²C
- Price: \$5.25

Temperature Sensor

- Purpose: Temperature Measurement for the Shading System
- Product: SparkFun Temperature Sensor with Qwiic Ports
- Onboard Light Sensor: TMP102
- Output: Digital
- Temperature Detection Range: -40°C 125°C with accuracy of 0.3°C
- Operating Voltage: 3.3 V
- Communication Feature: I²C
- Price: \$6.50

Moisture Sensor

- Purpose: Soil Moisture Measurement for the Irrigation System
- Product: SparkFun Moisture Sensor
- Onboard Light Sensor: TMP102
- Output: Analog
- Soil Moisture Detection Range (after ADC conversion): 0-1023 bits
- Operating Voltage: 3.3 5 V
- Price: \$5.95

Sensor Connectors

- Ports will be soldered on to the PCB for the wire connections.
- Benefits: Modularity and Ease of Access

Microcontroller Requirements

- Must consist of multiple GPIO pins
- Must be compatible with the chosen sensors
- Must be able to conduct I2C communication
- Must have a high clock speed
- Must be small enough to fit on the PCB
- Most be cost effective

Microcontroller Selection

MSP430FR6989

- Chip: MSP430
- SRAM: 2 KB
- Clock Rate: 16 MHz
- GPIO Ports: 83
- Cost: \$20.00
- Operating Voltage: 3V

Arduino Uno

- Chip: ATmega328
- SRAM: 2 KB
- Clock Rate: 16 MHz
- GPIO Ports: 14
- Cost: \$23.00
- Operating Voltage: 5V

Arduino Uno

- 2 KB SRAM & 16 MHz clock rate
- 14 GPIO Ports
- Capable of both 5V and 3.3V
- Price: \$23.00
- Arduino open source
- Availability of tutorials

Wi-Fi Module

WiFi Module Comparison

ESP-01

- Chip: ESP8266
- Operating Voltage: 3.3 V
- Maximum Operating Current: 250 mA
- WiFi Modes: 802.11b/g/n
- 2.4 GHz
- GPIO Ports: 2
- Price: \$12.99 for Quantity of 4

NodeMCU

- Chip: ESP8266 (ESP-12E)
- Operating Voltage: 3.3 V
- Maximum Operating Current:
- WiFi Modes: 802.11b/g/n
- 2.4 GHz
- GPIO Ports: 16
- Price: \$13.99 for Quantity of 3

Power System

Solar Panel

- Renogy 10W 12V
- Monocrystalline
- Corrosion-Resistant
- Multi-layered Sheet Laminations
- Bypass Diodes
- Operating Temperature: -40°F to 194°F
- Efficiency 95%
- Dimensions: 10.6"x13.4"x1.0"
- Price: \$33.99

Solar Charge Controller

- Maximum Input Voltage: +30V
- Maximum Continuous Charge Current: 4A
- Photovoltaic Cell
 Maximum Power Point Tracking
- Step-down PWM Charge Controller
- Regulation Voltage can be adjusted
- CC and CV Charging Mode
- Automatic Recharge
- Charging and Termination Indication

Rechargeable Battery

- ExpertPower 12V 5Ah Lithium LiFePO4
- 2500-7000 Life Cycles
- Built-in BMS
- Low Self-Discharge (2%/month)
- Dimensions: 3.54"x2.76"x3.98"
- Weight: 1.7 pounds
- Price: \$39.99

Voltage Regulators

- LM2576 Switching Regulator
- Efficiency ~80-85%
- Output Current 3A
- Output Voltage

• 3.3V

- **5**V
- **7V**
- **12V**
- BOM Count 7

• Experience

Application

- To allow the user to insert data about the plant as well as manually control the system
- Developed with Adobe XD
- **Designed for iOS & Android**
- Capabilities:
 - Selecting the plant Ο
 - Manual input of care 0
 - Manual control of systems 0

Welcome!

Please select from the follo

Sele

Ma

Select a New Plant

wing options:	Sunflower
t a New Plant	Insert My Own
nual Control	

PCB Schematic

PCB Layout: Arduino Uno (ATMega328)

PCB Layout: Sensor Ports and Other Connectors

PCB Layout: Voltage Regulators

PCB Layout: Motor Driver

PCB Layout: WiFi Module

PCB Layout: Solar Power Controller

PCB Layout

Economic Constraints

- Self-sponsored
- Time limit of two semesters

Environmental Constraints

- Solar power can only be generated when the Sun is out
- High temperatures
- Rain

Manufacturability

- Electromechanical Systems
 - Shading System
 - Irrigation System
 - Rotational System
- Equipment Availability
- Components Selection
- Experience

Sustainability

- Climate Changes
- Corrosion Resistant
- High/Low Temperatures
- Operational Levels
- Storage of Electrical Components

Health & Safety

- Water Safety
- Rotation
- Materials
- Potential Fire
- Potential Shock

Social

- Affordable
- Easy to Use
- Product Size

Ethical Constraints

- Academic Integrity
- Product Honesty

Political Constraints

• No Political Constraints for this Project

Related Standards

Battery Standards

- UN/DOT 38.3
- IEC 62133
- UL 2054
- UL 1642
- UL 1973
- ANSI C18.2M

Solar Panel

- IEC 61215
- IEC 61730
- IEC 62716
- IEC 61701
- IEC 60068-2-68
- UL 1703
- UL 61730

Related Standards

Programming Language

- IEEE 1178-1990
- ISO/IEC 9899
- ISO/IEC 9899: 2011
- ISO/IEC 9899: 2018

WiFi Standards

• 802.11a/b/c/g/n

RoHS Standards

Part	Cost
Plant System	\$10
Irrigation System	\$60
Light Sensor	\$15
Moisture Sensor	\$20
Temperature Sensor	\$17
Wi-Fi Module	\$20
Rotational System	\$30

Part	Cost
Shading System	\$50
Microcontroller Kit	\$80
Power System	\$50
Solar Panel	\$34
Software Development	\$0
РСВ	\$20
Total	\$406

Testing

- Motors.
- Water pump.
- Mictocontroller
- Light sensor
- Moisture sensor
- Temperature sensor
- Wi-Fi Moduel

- Irrigation system
- Rotational system
- Shading system

Future Plan

- Complete Software Testing
- Complete Hardware Testing
- Finish Developing the Application
- Complete Prototyping

Thank You!

Questions?